

www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

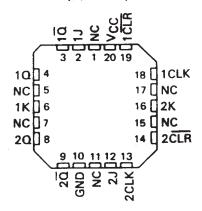
. .

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The '107 contain two independent J-K flip-flops with individual J-K, clock, and direct clear inputs. The '107 is a positive pulse-triggered flip-flop. The J-K input data is loaded into the master while the clock is high and transferred to the slave and the outputs on the high-tolow clock transistion. For these devices the J and K inputs must be stable while the clock is high.

The 'LS107A contain two independent negative-edgetriggered flip-flops. The J and K inputs must be stable prior to the high-to-low clock transition for predictable operation. When the clear is low, it overrides the clock and data inputs forcing the Q output low and the \overline{Q} output high.


The SN54107 and the SN54LS107A are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74107 and the SN74LS107A are characterized for operation from 0 °C to 70 °C.

SN54107, SN54LS107A J PACKAGE
SN74107 N PACKAGE
SN74LS107A D OR N PACKAGE

(TOP VIEW)

IJ	1	U14	bv _{cc}
100	2	13	11CLR
100	3	12	
1K[4	11]2К
20[5	10	2CLR
20[6	9	
	7	8]2J

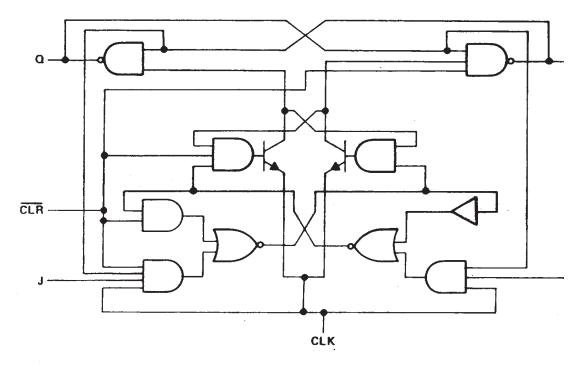
SN54LS107A . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

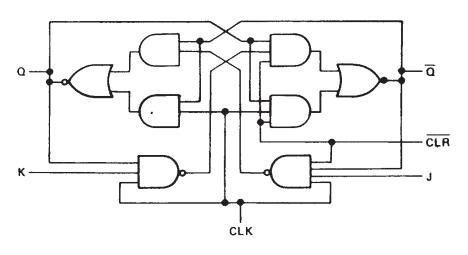
	FUNCTION TABLE												
	INPU	TS		OUTF	PUTS								
CLR	CLK	J	к	٥	ā								
L	×	х	х	L	н								
н	л	L	L	00	ā0								
н	л	н	L	н	L								
н	л	L	н	L	н								
н	л	н	н	TOGGLE									

107

'LS107A **FUNCTION TABLE** OUTPUTS INPUTS ā CLR к α CLK J х L н Ł X х ā₀ н L L **Q**0 L н н L н L ł н н н L, ŧ. L Н TOGGLE н £ н х х 00 ā₀ н н

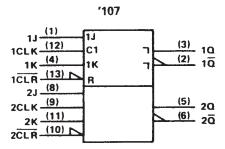

Copyright © 1988, Texas Instruments Incorporated

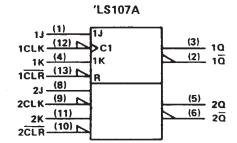
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



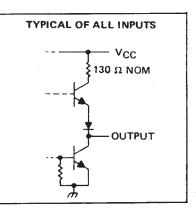
SN54107, SN54LS107A, SN74107, SN74LS107A DUAL J-K FLIP-FLOPS WITH CLEAR SDLS036 – DECEMBER 1983 – REVISED MARCH 1988

logic diagrams (positive logic)



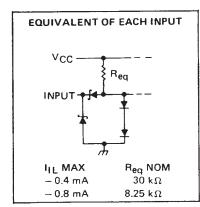


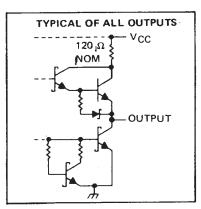
logic symbols[†]



[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, and N packages.

schematic of inputs and outputs


EQUIVALENT OF EACH INPUT


'107

.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	
Input voltage: '107	5.5 V
	7.
'LS107A	······································
Operating free-air temperature range: SN54'	
SN74'	0°C to 70°C
Storage temperature range	-65° C to 150° C

NOTE 1: Voltage values are with respect to network ground terminal.

SN54107, SN74107 DUAL J-K FLIP-FLOPS WITH CLEAR

SDLS036 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

				SN54107			SN54107 SN74107				17	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT			
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V			
VIH	High-level input voltage		2			2			V			
VIL	Low-level input voltage				0.8			0.8	V			
ЮН	High-level output current			- 0.4	_		- 0.4	mA				
10L	Low-level output current				16			16	mA			
		CLK high	20			20						
tw	Pulse duration	CLK low	47			47			ns			
		CLR low	25			25						
tsu	Input setup time before CLK1		0			0			ns			
t _h	Input hold time-data after CLK1		0			0			กร			
TA	Operating free-air temperature		- 55		125	0		70	°C			

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS [†]			SN5410	7		SN7410	7	
FAR	AMETER	TEST CONDITIONS			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK		V _{CC} = MIN,	l1 = - 12 mA				- 1.5			- 1.5	V
V _{OH}		V _{CC} = MIN, I _{OH} = - 0.4 mA	V _{IH} = 2 V,	V _{IL} = 0.8 V,	2.4	3.4		2.4	3.4		v
VOL	, dan dana an 42	V _{CC} = MIN, I _{OL} = 16 mA	V _{IH} = 2 V,	V _{1L} = 0.8 V,		0.2	0.4		0.2	0.4	v
1		V _{CC} = MAX,	V ₁ = 5.5 V	······			1			1	mA
1	J or K	Vcc = MAX,	V1 = 2.4 V	···· ·································			40			40	
Чн	All other	VCC - MAA,	V - 2.4 V				80			80	μA
1	J or K		V ₁ = 0.4 V				- 1.6			- 1.6	
ΊL	All other	V _{CC} = MAX,	V] = 0.4 V				- 3.2			- 3.2	mA
los §		V _{CC} = MAX	·		- 20		- 57	- 18		- 57	mA
Icc1		V _{CC} = MAX,	See Note 2	· · ·		10	20		10	20	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25 ° C.

[§]Not more than one output should be shorted at a time.

Average per flip-flop.

NOTE 2: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input is grounded.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	IDITIONS	MIN	түр	MAX	UNIT
fmax				-	15	20		MHz
^t PLH		ā				16	25	ns
^t PHL	CLR	Q	R _L = 400 Ω,	C _L ≈ 15 pF		25	40	ns
^t PLH	CL K	$\overline{\Omega}$ or $\overline{\overline{\Omega}}$				16	25	ns
^t PHL	CLK	UorU				25	40	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54LS107A, SN74LS107A DUAL J-K FLIP-FLOPS WITH CLEAR

SDLS036 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

			S	SN54LS107A			SN54LS107A SN74LS107A				07A	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX				
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V			
ViH	High-level input voltage		2			2			V			
VIL	Low-level input voltage				0.7			0.8	V			
ЮН	High-level output current			-	- 0.4			- 0.4	mA			
†OL	Low-level output current				4			8	mA			
fclock	Clock frequency		0		30	0		30	MHz			
		CLK high	20			20						
tw	Pulse duration	CLR low	25		;	25			ns			
		data high or low	20			20						
tsu	Setup time before CLK I CLR inactive					25			ns			
th	Hold time-data after CLK		0			0			ns			
TA	Operating free-air temperature		- 55		125	0		70	°C			

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		-		Nct	SN	154LS10	7A	SN	07A	UNIT																				
PARAMETER		TEST CONDITIONS [†]		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNTI																				
VIK		V _{CC} = MIN,	l _l = – 18 mA				- 1.5			- 1.5	V																			
VOH		V _{CC} = MIN, I _{OH} = 0.4 mA	V _{IH} = 2 V,	VIL = MAX,	2.5	3.4		2.7	3.4		v																			
.,		V _{CC} = MIN, I _{OL} = 4 mA	VIL = MAX,	V _{IH} = 2 V,		0.25	0.4		0.25	0.4	v																			
VOL		V _{CC} = MIN, I _{OL} = 8 mA	VIL = MAX,	V _{IH} = 2 V,					0.35	0.5	· ·																			
	J or K						0.1			0.1																				
4	CLR	V _{CC} = MAX,	V ₁ = 7 V	V ₁ = 7 V	V ₁ = 7 V	V ₁ = 7 V	V ₁ = 7 V	V ₁ = 7 V	V ₁ = 7 V	V ₁ = 7 V	V ₁ = 7 V	V ₁ = 7 V	V ₁ = 7 V	V1 = 7 V	V ₁ = 7 V	V ₁ = 7 V	V ₁ = 7 V	VI = 7 V	V1 = 7 V	V ₁ = 7 V	V ₁ = 7 V	V1 = 7 V				0.3			0.3	mA
	CLK																0.4			0.4										
	J or K						20			20																				
Чн	CLR	V _{CC} = MAX,	V ₁ = 2.7 V	2.7 V			60			60	μA																			
	CLK						80			80																				
	J or K						- 0.4			- 0.4	-																			
ΊL	CLR or CLK	$V_{CC} = MAX, V_I = 0.4 V$				- 0.8			0.8	mA																				
IOS §	£	V _{CC} = MAX,	See Note 4		- 20		- 100	- 20		- 100	mA																			
		V _{CC} = MAX,	See Note 2			4	6		4	4 6																				

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25°C.

§Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

NOTE 2: With all outputs open, I_{CC} is measured with the Q and Q, outputs high in turn. At the time of measurement, the clock input is grounded.

NOTE 4: For certain devices where state commutation can be caused by shorting an output to ground, an equivalent test may be performed with V_O = 2.25 V and 2.125 V for the 54 family and the 74 family, respectively, with the minimum and maximum limits reduced to one half of their stated values.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр	MAX	UNIT
fmax				30	45		MHz
^t PLH		0.5	$R_{L} = 2 k \Omega$, $C_{L} = 15 pF$		15	20	ns
^t PHL	CLR or CLK	Q or \overline{Q}			15	20	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated