LM387, LM387A

LM387 LM387A Low Noise Dual Preamplifier

Literature Number: SNOSBT7A
LM387/LM387A Low Noise Dual Preamplifier

General Description
The LM387 is a dual preamplifier for the amplification of low level signals in applications requiring optimum noise performance. Each of the two amplifiers is completely independent, with an internal power supply decoupler-regulator, providing 110 dB supply rejection and 60 dB channel separation. Other outstanding features include high gain (104 dB), large output voltage swing (VCC - 2V)p-p, and wide power bandwidth (75 kHz, 20 Vp-p). The LM387A is a selected version of the LM387 that has lower noise in a NAB tape circuit, and can operate on a larger supply voltage. The LM387 operates from a single supply across the wide range of 9V to 30V, the LM387A operates on a supply of 9V to 40V.

The amplifiers are internally compensated for gains greater than 10. The LM387, LM387A is available in an 8-lead dual-in-line package. The LM387, LM387A is biased like the LM381. See AN-64 and AN-104.

Features
- Low noise 1.0 µV total input noise
- High gain 104 dB open loop
- Single supply operation
- Wide supply range LM387 9 to 30V
- LM387A 9 to 40V
- Power supply rejection 110 dB
- Large output voltage swing (VCC - 2V)p-p
- Wide bandwidth 15 MHz unity gain
- Power bandwidth 75 kHz, 20 Vp-p
- Internally compensated
- Short circuit protected
- Performance similar to LM381

Schematic and Connection Diagrams

Typical Applications

FIGURE 1. Flat Gain Circuit (AV = 1000)

FIGURE 2. NAB Tape Circuit
Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage
LM387 +30V
LM387A +40V

Power Dissipation (Note 1) 1.5W
Operating Temperature Range 0°C to +70°C
Storage Temperature Range -65°C to +150°C
Lead Temperature (Soldering, 10 sec.) 260°C

Electrical Characteristics $T_A = 25^\circ C$, $V_{CC} = 14V$, unless otherwise stated

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Gain</td>
<td>Open Loop, $f = 100$ Hz</td>
<td></td>
<td>160,000</td>
<td></td>
<td>V/V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>LM387, V_{CC} 9V–30V, $R_L \to \infty$</td>
<td>10</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>LM387A, V_{CC} 9V–40V, $R_L \to \infty$</td>
<td>10</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>Positive Input</td>
<td>50</td>
<td>100</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td></td>
<td>Negative Input</td>
<td>200</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>Input Current</td>
<td>Open Loop</td>
<td></td>
<td>0.5</td>
<td>3.1</td>
<td>μA</td>
</tr>
<tr>
<td>Output Resistance</td>
<td>Open Loop</td>
<td></td>
<td>150</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Output Current</td>
<td>Source</td>
<td>8</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Sink</td>
<td>2</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>Peak-to-Peak</td>
<td></td>
<td></td>
<td>$V_{CC} - 2V$</td>
<td>V</td>
</tr>
<tr>
<td>Unity Gain Bandwidth</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Large Signal Frequency</td>
<td>Response</td>
<td></td>
<td>20 Vp-p ($V_{CC} > 24V$), THD ≤ 1%</td>
<td>75</td>
<td>kHz</td>
</tr>
<tr>
<td>Maximum Input Voltage</td>
<td>Linear Operation</td>
<td></td>
<td></td>
<td>300</td>
<td>mVRms</td>
</tr>
<tr>
<td>Supply Rejection Ratio</td>
<td>Input Referred</td>
<td></td>
<td>110</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Channel Separation</td>
<td>$f = 1$ kHz</td>
<td>40</td>
<td>60</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Total Harmonic Distortion</td>
<td>60 dB Gain, $f = 1$ kHz</td>
<td>0.1</td>
<td>0.5</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Total Equivalent Input Noise</td>
<td>(Flat Gain Circuit)</td>
<td>10 Hz–10,000 Hz LM387 Figure 1</td>
<td>1.0</td>
<td>1.2</td>
<td>μVrms</td>
</tr>
<tr>
<td>Output Noise NAB Tape</td>
<td>Playback Circuit Gain of 37 dB</td>
<td></td>
<td></td>
<td>400</td>
<td>700</td>
</tr>
</tbody>
</table>

Note 1: For operation in ambient temperatures above 25°C, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 80°C/W junction to ambient.

Typical Applications (Continued)

Two-Pole Fast Turn-ON NAB Tape Preampifier

Frequency Response of NAB
Circuit of Figure 2
Typical Performance Characteristics

VCC vs ICC

Gain and Phase Response

Large Signal Frequency Response

PSRR vs Frequency (Input Referred)

Channel Separation

Distortion vs Frequency

Non-Inverting Amplifier

Noise Voltage vs Frequency

Noise Current vs Frequency

Distortion vs Frequency

Inverting Amplifier

TLH47845–7

Obsolete
Typical Applications (Continued)

Inverting Amplifier Ultra-Low Distortion

Typical Magnetic Phono Preamp

Physical Dimensions inches (millimeters)

Molded Dual-In-Line Package (N)
Order Number LM387N or LM387AN
NS Package Number NO8E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

Corporation

Europe

Hong Kong Ltd.

Japan Ltd.

1111 West Bardin Road

Arlington, TX 76017

Tel: (800) 272-9959

Fax: (800) 737-7018

National Semiconductor Corporation

Europe

Tel: (+49) 0-180-530 85 86

Email: onywss@ nationalsc.com

Deutsch Tel: (+49) 0-180-530 85 86

English Tel: (+49) 0-180-532 78 32

Français Tel: (+49) 0-180-532 93 58

Italiano Tel: (+49) 0-180-534 16 80

Tel: (852) 2737-1600

Fax: (852) 2736-0960

National Semiconductor

Hong Kong Ltd.

13th Floor, Straight Block,

Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon

Tel: (852) 2737-1600

Fax: (852) 2736-0960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning such use. Reproduction of TI information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

TI E2E Community Home Page: e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated